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Stochastic block model (SBM)

SBM(n, K, π, B) is a generative latent variable model

• Each node i ∈ [n] := {1, · · · , n} has a cluster label
hi ∈ [K ]

• Probability that a node is in cluster K = πk

• Probability that nodes i, j are connected = Bhi ,hj

• Observation: adjacency matrix An×n, latent vari-
ables: hn×1

In this paper, we theoretically study the convergence
properties of structured variational inference (VI) on
SBM
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Variational inference

Basic idea: approximate the intractable P(h|X ) with variational distribution Q(h) by optimization

• The maginal likelihood (evidence) can be decomposed as

logP(X ) =

∫
Q(h) logP(X )dh

=

∫
Q(h) log

P(X ,h)

Q(h)
dh +

∫
Q(h) log

Q(h)

P(h |X )
dh

= ELBO +DKL(Q(h)||P(h |X ))

• For inference problem, P(X ) is considered as a constant, so

min
Q
DKL(Q(h)||P(h |X ))⇔ max

Q
ELBO
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Mean-field variational inference

• Mean-field variational inference (MFVI) assumes factorized Q distribution of
h = (h1, . . . , hn)T

Q(h) =
n∏

i=1

qθi (hi )

Wainwright & Jordan, 2008

• The factorized assumption allows closed-form coordinate ascent

• However, mean-field approximations makes the nonconvexity as an intrinsic property

→ multiple local optima
→ sensitivity to initialization
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Motivations

A gap between what are used in practice and what is known in theory for VI:

• On the one end, theoretical explanation of the success of “modern" VI with a variety of
dependence structure is an open problem

• For SBM, the full theory is lacking for methods that model the node dependency, such as the
belief propagation (BP)

• On the other hand, MFVI’s behavior has been well understood in SBM with two equal size
clusters

Question: Theoretically, can additional dependence structure improve the VI objective landscape?
Approach: A case study by constructing VI with pairwise structure (VIPS)
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Pairwise dependence structure 1

• The n nodes are ramdomly partitioned to two
sets: P1 = {z1, · · · , zn/2}, P2 = {y1, · · · , yn/2}

• Nodes zi in P1 are paired with nodes yi in P2

• VIPS: qφ(h) =
∏n/2

i=1 Categorical((hzi , hyi );ψi )

ψi = σ(θi ) with softmax link function, logits
θi = (θ00

i , θ
01
i , θ

10
i , θ

11
i ) ; u ∈ Rn is MLE as the

estimated membership vector

• MFVI: Variational distribution is a product of in-
dependent Bernoulli distributions

An illustration of a random pairwise
partition, n = 10.

1We do not aim to design state-of-art method; rather we keep the dependence structure simple so the theoretical
analysis is clear.
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Case 1: Known model parameters

We update parameters iteratively

i-th meta iteration: θ10 → u(i)
1 → θ01 → u(i)

2 → θ11 → u(i)
3 → θ10 · · ·

Theorem (Sample behavior for known parameters)
Assume θ are initialized as 0 and the elements of u are initialized i.i.d from Bernoulli(0.5).
When p � q � ρn, p − q = Ω(ρn), and

√
nρn = Ω(log(n)), VIPS converges to the true labels

asymptotically, in the sense that

‖u(2)
3 − h∗‖1 = n exp(−ΩP(nρn))

h∗ are the true labels with h∗ = 1G1 or 1G2 . The same convergence holds for all the later
iterations.

Corollary: When u is initialized from a distribution with mean µ 6= 0.5, ‖u(3)
3 − h∗‖1 = n exp(−ΩP(nρn))
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Proof Sketch

• The proof hinges on SVD of P = E[A|U] = p+q
2 1n1T

n + p−q
2 v2v

T
2 − pI , where

‖u − h∗‖1 = n/2− |〈u, v2〉|; we show signal |〈u, v2〉| increases at each iteration
• We use Littlewood-Offord type anti-concentration to ensure the signal is not too small

We use a Berry-Esseen bound and a uniform bound based on Hoeffding inequality to handle
the noise
• We show in the first three iterations (first meta-iteration)

〈u(1)1 , v2〉 = ΩP(n
√
ρn)

〈u(1)2 , v2〉 ≥
n

8
− oP(n)

〈u(1)3 , v2〉 ≥
n

4
− oP(n);

after the second meta-iteration

〈u(2)3 , v2〉 ≥
n

2
− n exp(−ΩP(nρn))
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Simulation 1

`1 distance from ground truth (Y axis) vs. number of iterations (X axis). The line is the mean of 20
random trials and the shaded area shows the standard deviation. u is initialized from i.i.d. Bernoulli with
mean µ = 0.1, 0.5, 0.9 from the left to right.
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Case 2: Estimated, fixed model parameters

Proposition (Parameter robustness)
If we replace true p, q with some estimation p̂, q̂, we have

‖u(2)
3 − h∗‖1 = n exp(−ΩP(nρn))

if i) p+q
2 > λ̂, ii) λ̂− q = Ω(ρn), iii) t̂ = Ω(1), where t̂ = 1

2 log
p̂/(1− p̂)

q̂/(1− q̂)
, λ̂ = 1

2t̂ log
1− q̂

1− p̂
.
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Simulation 2-1

(a) MFVI (b) VIPS

NMI averaged over 20 random initializations for each p̂, q̂ (p̂ > q̂). The true parameters are
(p0, q0) = (0.2, 0.1), π = 0.5 and n = 2000. The dashed lines indicate the true parameter values.
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Simulation 2-2

(a) (b)

Comparison of NMI under different SNR p0/q0 and network degrees. The lines and error bars are means
and standard deviations from 20 random trials. (a) Vary p0/q0 with degree fixed at 70. (b) Vary the
degree with p0/q0 = 2. In both figures n = 2000.
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Case 3: Updating model parameters

Theorem (Updating parameters and u simultaneously)

Suppose we initialize with some estimates of true (p, q) as p̂ = p(0), q̂ = q(0) satisfying the
conditions in Proposition (Parameter robustness) and apply two meta iterations to update u

before updating p̂ = p(1), q̂ = q(1). After this, we alternate between updating u and the
parameters after each meta iteration. Then

p(1) = p + OP(
√
ρn/n), q(1) = q + OP(

√
ρn/n),

‖u(2)3 − z∗‖1 = n exp(−Ω(nρn)),

and the same holds for all the later iterations.
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Simulation 3

Values of ‖u − z∗‖1 as the number of meta iterations increases. Each line is the mean curve of 50
random trials and the shaded area is the standard deviation. Here n = 2000 and p0 = 0.1, q0 = 0.02. u
is initialized by Bernoulli distribution with mean µ = 0.1, 0.5, 0.9 from the left to right.
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Comparison to MFVI

MFVI 2 VIPS

For unknown model parameters, MFVI with ran-
dom initializations converges to the uninforma-
tive stationary points with non-negligible proba-
bility

Converges to the true membership vector with
probability approaching 1

When the initialization is not centered at 0.5,
MFVI converges to 0n or 1n

When updating model parameters, MFVI with a
random initialization converges to 1

21n

Less robust to mis-specified model parameters More robust to mis-specified model parameters

2MFVI results are shown in (Mukherjee et al.,2018, Sarkar et al. 2019)
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Future directions

• Study VIPS on SBM with multiple, unbalanced clusters

• Use similar methods to study the algorithms such as belief propagation on SBM

• Theoretically study structured VI with more general dependence structures and probabilistic
models

· · · · · ·
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Thank you!
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