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Stochastic block model (SBM)

SBM(n, K, 7, B) is a generative latent variable model

e Each node i € [n] := {1,---, n} has a cluster label
h; € [K]

e Probability that a node is in cluster K = 7y
e Probability that nodes i, j are connected = By, p,

e Observation: adjacency matrix A,x,, latent vari-
ables: h, 1

In this paper, we theoretically study the convergence
properties of structured variational inference (VI) on
SBM

By Aaron Clauset



Variational inference

Basic idea: approximate the intractable P(h|X) with variational distribution Q(h) by optimization

e The maginal likelihood (evidence) can be decomposed as
log P(X) = / Q(h) log P(X)dh

_ / Q(h)log ~ é)((,’,;')dﬂ / Q(h) log Pa(f’))()dh

= ELBO + Dk (Q(h)||P(h| X))

e For inference problem, P(X) is considered as a constant, so

min Dy (Q(H)][P(h| X)) < max ELBO



Mean-field variational inference

o Mean-field variational inference (MFVI) assumes factorized Q distribution of

h=(hy,... h)7
/N

Q(h) = H qo;(hi) "

Wainwright & Jordan, 2008

~,
<

e The factorized assumption allows closed-form coordinate ascent

e However, mean-field approximations makes the nonconvexity as an intrinsic property

— multiple local optima
— sensitivity to initialization



A gap between what are used in practice and what is known in theory for VI:

e On the one end, theoretical explanation of the success of “modern™ VI with a variety of
dependence structure is an open problem

e For SBM, the full theory is lacking for methods that model the node dependency, such as the
belief propagation (BP)

e On the other hand, MFVI's behavior has been well understood in SBM with two equal size
clusters

Question: Theoretically, can additional dependence structure improve the VI objective landscape?
Approach: A case study by constructing VI with pairwise structure (VIPS)



Pairwise dependence structure !

e The n nodes are ramdomly partitioned to two
sets: Py ={z1,--, 252}, Po={y1,"- , Y2} T

e Nodes z; in Py are paired with nodes y; in P, LQ O @ @}

o VIPS: gy (h) = [[7/2 Categorical((hs,, hy,); ;)
; = o0(0;) with softmax link function, logits [@ O @
0; = (69,091,010 911) ; u € R" is MLE as the o 3 Ve %

[ B |

estimated membership vector ) ) o
An illustration of a random pairwise

e MFVI: Variational distribution is a product of in-  Partition, n =10.

dependent Bernoulli distributions

1We do not aim to design state-of-art method; rather we keep the dependence structure simple so the theoretical
analysis is clear.



Case 1: Known model parameters

We update parameters iteratively
i-th meta iteration: 6% — u() — 0% — u() - 0" - u() —0%...
Theorem (Sample behavior for known parameters)

Assume @ are initialized as 0 and the elements of u are initialized i.i.d from Bernoulli(0.5).

When p =< q =< pn, p— q = Q(pn), and /np, = Q(log(n)), VIPS converges to the true labels
asymptotically, in the sense that

||Ug)2) _ h*Hl — nexp(_QP(npn))

h* are the true labels with h* = 1¢, or 1¢,. The same convergence holds for all the later
iterations.

Corollary: When u is initialized from a distribution with mean p # 0.5, ||ug3) — h*[|1 = nexp(—Qp(nps))



Proof Sketch

e The proof hinges on SVD of P = E[A|U] = 2£91,1T + E29v,v,] — pl, where
lu—h"||; = n/2 —|(u, v2)|; we show signal |<u7 v2)| increases at each iteration

e We use Littlewood-Offord type anti-concentration to ensure the signal is not too small
We use a Berry-Esseen bound and a uniform bound based on Hoeffding inequality to handle
the noise

e We show in the first three iterations (first meta-iteration)

after the second meta-iteration

n
(0, v2) > 2 — nexp(—Qp(npn)



Simulation 1
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{1 distance from ground truth (Y axis) vs. number of iterations (X axis). The line is the mean of 20
random trials and the shaded area shows the standard deviation. u is initialized from i.i.d. Bernoulli with
mean g = 0.1,0.5,0.9 from the left to right.



Case 2: Estimated, fixed model parameters

Proposition (Parameter robustness)

If we replace true p, q with some estimation p, §, we have

|u — bl = nexp(—Q2p(npn))

ifi) B > 8, i) A= q=Q(pn), iii) £=Q(1), where = 1log g—_
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Simulation 2-1
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NMI averaged over 20 random initializations for each p, § (p > §). The true parameters are
(po, go) = (0.2,0.1), 7 = 0.5 and n = 2000. The dashed lines indicate the true parameter values.
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Simulation 2-2
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Comparison of NMI under different SNR po/qo and network degrees. The lines and error bars are means
and standard deviations from 20 random trials. (a) Vary po/qo with degree fixed at 70. (b) Vary the
degree with po/qo = 2. In both figures n = 2000.
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Case 3: Updating model parameters

Theorem (Updating parameters and u simultaneously)

Suppose we initialize with some estimates of true (p, q) as p = p(®), § = q(© satisfying the
conditions in Proposition (Parameter robustness) and apply two meta iterations to update u
before updating p = p), § = qV). After this, we alternate between updating u and the
parameters after each meta iteration. Then

pM = p+ Op(vpn/n),  a™) = q+ Op(v/pn/n),
) — 2|1 = nexp(—Q(npn)).

and the same holds for all the later iterations.
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Simulation 3
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Values of ||u — z"||; as the number of meta iterations increases. Each line is the mean curve of 50
random trials and the shaded area is the standard deviation. Here n = 2000 and po = 0.1, go = 0.02. u
is initialized by Bernoulli distribution with mean = 0.1,0.5,0.9 from the left to right.
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Comparison to MFVI

MFVI 2 VIPS

For unknown model parameters, MFVI with ran-
dom initializations converges to the uninforma-
tive stationary points with non-negligible proba- | Converges to the true membership vector with
bility probability approaching 1

When the initialization is not centered at 0.5,
MFVI converges to 0, or 1,

When updating model parameters, MFVI with a
random initialization converges to %1,,

Less robust to mis-specified model parameters More robust to mis-specified model parameters

2MPFVI results are shown in (Mukherjee et al.,2018, Sarkar et al. 2019)
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Future directions

e Study VIPS on SBM with multiple, unbalanced clusters
e Use similar methods to study the algorithms such as belief propagation on SBM

e Theoretically study structured VI with more general dependence structures and probabilistic
models
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Thank you!
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