TEXAS

The University of Texas at Austin

Semi-implicit generator

(a)Explicit (b)Implicit (c)True (d)SIG (e)GAN

25000 mmm Genera ted
Original
20000 0.30 1

0.25 A

0.35 A1

15000 A
0.20 A

10000 A 0.15 A
0.10 -
5000 A
0.05 A1
0 - 0.00

0 5 10 0.0 25 50 7.5 10.0

(f)Explicit (g)Implicit
0.30

W Genera ted

30000 Original 0.25 -

25000
0.20 A1
20000

0.15 -
15000

10000 0.10 1

5000 0.05

0 0.00

0 5 10 15 20 0 5 10 15 20 =5

Types of generative models

- Explicit generative models: has tractable probability density; can be trained with MLE;
for example: VAE, PixelRNN, RealNVP, SBN

- Implicit generative models: has no point-wise evaluable PDF; can be trained adver-
sarially but not with MLE; for example: GAN

Semi-implicit Generator

- Implicit-step: 8; = g(2;), z; ~ p(z); Explicit-step: x; ~ p(x | 6;).

- Can be considered as an infinite mixture of analytic densities with an implicit mixing
distribution x; ~ [ p(x|0)p,(0)d6
- With finite mixture approximation, SIG can be trained in the MLE framework
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SI1G Generation in Multi-modal Space

Definition 1: Discrete multi-modal space

K
Suppose (X,v) is a metric space with metric v : X x X — R", X = [J U,
i—1

. where U; N U; = ( for i # j. Let the distance between two sets be
DU;,U;) = inf{v(z,y);x € U,y € U,;} and let the diameter of a set be
)

dU) = sup{v(z,y);x,y € U}. Suppose there exists ¢y > ¢y > 0 such that
K

min; ; D(U;, U;) > ¢y, max; d(U;) < €y. Then X = [ J Uy, is a discrete multi-modal
k=1

space under mesure V.

- We can study a simplified optimal assignment problem: assuming that N data points
have been sampled from the true data distribution, how to assign M generated data
to the neighborhood of the true data such that H,; defined in (1) is minimized under
expectation?
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K
- The discrete multi-modal space X = |JU;, #; € Uy, 0, € U, t;,2; € {1,..., K}
i—1
and {m;.}1* | are the number of 8's that are assigned to be in Uj.
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Theorem 1: SIG in multi-modal space

K

Suppose Py, is defined on a discrete multi-modal space X = | J U; with [>-norm.
i=1

Suppose there are N data points @; ~ Pju4,2 = 1,- -+, N, among which n; points

belong to Uj. Suppose we need to sample 8, ~ py(0),5 = 1,--- M, and my
denotes the number of 8's in U;. Denoting r as a radial basis function (RBF), we
let u = Elr(x,0)| if £,0 € U;, and v = Ejr(x,0)| if x € U;, 8 € U;,i # j.
Then the objective in (2) is convex and the optimum my to maximize (2) satisfies

ﬂ __ Np n 1 Kv . * . N 1
= Le 4 (& K)<u_v>. In particular, m; # 0 if n; > RTTET

- We compare different generative models on a 5 X 5 Gaussian mixture model by sam-
pling 50,000 points from trained generator.
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GAN with Semi-implicit Regularizer

- Generative adversarial network (GAN) solves a minimax problem

Hlél’l mgx V(D7 G) — Eﬂ?NPdata(m) [log D(CL‘)] + EZNP(z>[1Og(1 B D(G(Z))]

- Changing generator loss from E.[log(1 — D(G(z))] to sE, exp(o~'(D(G(2)))), and
setting discriminator as ideally optimal one, the generator loss of GAN is identical to

the SIG loss.

- Combining SIG and GAN objective as GAN-SI can interpolate between the adversarial
training (weak fitting) and MLE training (strong fitting).

- For GAN-SI, the discriminative loss is

mvin —Eoplog Dy(@) — E,pz) log(l — D, (Ty(2))) (3)

- the generator loss is a linear combination of the original GAN loss and SIG loss

m(gn —E, yz)llog D(T4(z)) — MEz~p,log /p(a: 10)ps(0)d6), (4)
-~y are the discriminator network parameters, @ = T,(z) is the deterministic transform
in the implicit distribution and A > 0 is a hyperparameter to balance the strength

between the GAN and SIG objectives.

GAN-SI Experiments

Stacked MNIST

- To measure the performance on discrete multimode data, we stack 3 randomly chosen
MNIST images on the RGB color channels to form a 28 x 28 x 3 image (MNIST-3).

- MNIST-3 contains 1000 modes corresponding to 3-digit between 0 and 999.

1S High quality exp(H (y|z)) exp(H(y)) Mode KL(P,)|| Py

DCGAN(S)  2.940.52 0.63+0.14 1.96+0.32 51+119  21.0+8.12  4.99-0.24
DCGAN-SI(S) 4.33+0.59 0.640.07 2.0540.2 8.78+0.41 279.2+296.52 2.63+1.0

- DCGAN(M) 5594+0.36 0.7+0.03  1.71+0.09 9.514+0.31 811.8+116.24 0.75+0.35
DCGAN-SI(M) 5.93+0.47 0.72+0.04 1.65+0.11 9.75+0.11 969.0+29.19 0.3+0.13

DCGAN(L) 4.71+1.12 0.6740.08 1.78+0.17 8.254+1.32 389.8+477.24 2.95+2.33
DCGAN-SI(L) 6.05+0.68 0.73+0.06 1.62+0.17 9.75+0.12 957.0+32.74 0.36+0.12

- High quality image and entropy exp(H (y|x)) reflect sample quality while exp(H (y)),
Mode and KL reflect sample diversity. For Inception score, High quality image,
exp(H (y)), higher is better; for exp(H (y|x)) and KL, lower is better.

CIFAR10

- We test the semi-implicit regularizer on the CIFAR-10 dataset.

- We combine semi-implicit regularizer with DCGAN and WGAN-GP to balance the
quality and diversity of generated samples.
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