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Types of generative models

- Explicit generative models: has tractable probability density; can be trained with MLE;
for example: VAE, PixelRNN, RealNVP, SBN

- Implicit generative models: has no point-wise evaluable PDF; can be trained adver-
sarially but not with MLE; for example: GAN

Semi-implicit Generator

- Implicit-step: θi = gφ(zi), zi ∼ p(z); Explicit-step: xi ∼ p(x |θi).
- Can be considered as an infinite mixture of analytic densities with an implicit mixing

distribution xi ∼
∫
p(x|θ)pφ(θ)dθ

- With finite mixture approximation, SIG can be trained in the MLE framework

min
φ

HM = −Epdata(x)Eθ1,··· ,θM∼pφ(θ) log
1

M

M∑
j=1

p(x |θj) (1)

SIG Generation in Multi-modal Space

Definition 1: Discrete multi-modal space

Suppose (X , ν) is a metric space with metric ν : X × X 7→ R+, X =
K⋃
i=1

Ui

, where Ui ∩ Uj = ∅ for i 6= j. Let the distance between two sets be
D(Ui, Uj) = inf{ν(x, y);x ∈ Ui, y ∈ Uj} and let the diameter of a set be
d(U) = sup{ν(x, y);x, y ∈ U}. Suppose there exists c0 > ε0 > 0 such that

mini,jD(Ui, Uj) > c0, maxi d(Ui) < ε0. Then X =
K⋃
k=1

Uk is a discrete multi-modal

space under mesure ν.

- We can study a simplified optimal assignment problem: assuming that N data points
have been sampled from the true data distribution, how to assign M generated data
to the neighborhood of the true data such that HM defined in (1) is minimized under
expectation?

min
{m1,··· ,mk}

− 1

N

N∑
i=1

log
1

M

M∑
j=1

Exi∈Uti,θj∈Uzj [p(xi |θj)], (2)

- The discrete multi-modal space X =
K⋃
i=1

Ui, xi ∈ Uti, θj ∈ Uzj, ti, zj ∈ {1, . . . , K}

and {mk}Kk=1 are the number of θ’s that are assigned to be in Uk.

Theorem 1: SIG in multi-modal space

Suppose Pdata is defined on a discrete multi-modal space X =
K⋃
i=1

Ui with l2-norm.

Suppose there are N data points xi ∼ Pdata, i = 1, · · · , N , among which nk points
belong to Uk. Suppose we need to sample θj ∼ pφ(θ), j = 1, · · · ,M , and mk

denotes the number of θ’s in Uk. Denoting r as a radial basis function (RBF), we
let u = E[r(x,θ)] if x,θ ∈ Ui, and v = E[r(x,θ)] if x ∈ Ui, θ ∈ Uj, i 6= j.
Then the objective in (2) is convex and the optimum mk to maximize (2) satisfies
m∗k
M = nk

N + (nkN −
1
K)

Kv
(u−v). In particular, m∗k 6= 0 if nk >

N
K

1
1+u−v

Kv

.

- We compare different generative models on a 5× 5 Gaussian mixture model by sam-
pling 50,000 points from trained generator.

GAN with Semi-implicit Regularizer

- Generative adversarial network (GAN) solves a minimax problem

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z))]

- Changing generator loss from Ez[log(1−D(G(z))] to 1
2Ez exp(σ

−1(D(G(z)))), and
setting discriminator as ideally optimal one, the generator loss of GAN is identical to
the SIG loss.

- Combining SIG and GAN objective as GAN-SI can interpolate between the adversarial
training (weak fitting) and MLE training (strong fitting).

- For GAN-SI, the discriminative loss is

min
γ
−Ex∼Pd logDγ(x)− Ez∼p(z) log(1−Dγ(Tφ(z))) (3)

- the generator loss is a linear combination of the original GAN loss and SIG loss

min
φ
−Ez∼g(z)[logDγ(Tφ(z))− λEx∼Pd log

∫
p(x |θ)pφ(θ)dθ], (4)

-γ are the discriminator network parameters, θ = Tφ(z) is the deterministic transform
in the implicit distribution and λ ≥ 0 is a hyperparameter to balance the strength
between the GAN and SIG objectives.

GAN-SI Experiments

Stacked MNIST

- To measure the performance on discrete multimode data, we stack 3 randomly chosen
MNIST images on the RGB color channels to form a 28× 28× 3 image (MNIST-3).

- MNIST-3 contains 1000 modes corresponding to 3-digit between 0 and 999.

-

IS High quality exp(H(y|x)) exp(H(y)) Mode KL(Pg)||Pd
DCGAN(S) 2.9±0.52 0.63±0.14 1.96±0.32 5.1±1.19 21.0±8.12 4.99±0.24

DCGAN-SI(S) 4.33±0.59 0.6±0.07 2.05±0.2 8.78±0.41 279.2±296.52 2.63±1.0

DCGAN(M) 5.59±0.36 0.7±0.03 1.71±0.09 9.51±0.31 811.8±116.24 0.75±0.35
DCGAN-SI(M) 5.93±0.47 0.72±0.04 1.65±0.11 9.75±0.11 969.0±29.19 0.3±0.13

DCGAN(L) 4.71±1.12 0.67±0.08 1.78±0.17 8.25±1.32 389.8±477.24 2.95±2.33
DCGAN-SI(L) 6.05±0.68 0.73±0.06 1.62±0.17 9.75±0.12 957.0±32.74 0.36±0.12

- High quality image and entropy exp(H(y|x)) reflect sample quality while exp(H(y)),
Mode and KL reflect sample diversity. For Inception score, High quality image,
exp(H(y)), higher is better; for exp(H(y|x)) and KL, lower is better.

CIFAR10

- We test the semi-implicit regularizer on the CIFAR-10 dataset.

- We combine semi-implicit regularizer with DCGAN and WGAN-GP to balance the
quality and diversity of generated samples.

-
Real data

Unsupervised, standard CNN
DCGAN DCGAN-SI WGAN-GP WGAN-GP-SI

11.24 ± .12 6.16 ± .14 6.85± .06 6.43 ± .07 6.67 ± .11

(a)DCGAN

(b)DCGAN-SI
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