Meta-Learning without Memorization

Mingzhang Yin*†, George Tucker†, Mingyuan Zhou*, Sergey Levine*†, Chelsea Finn‡†

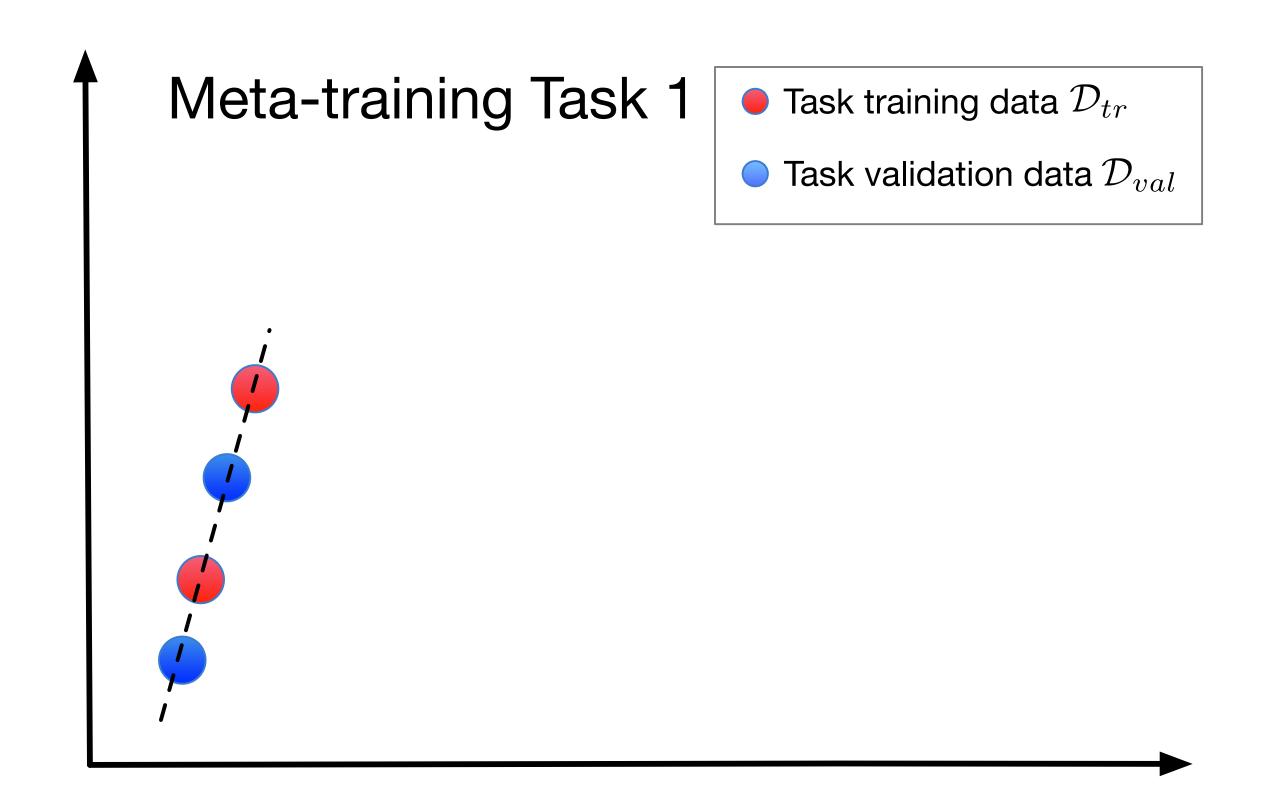
*UT Austin, †Google Research, Brain Team, *UC Berkeley, ‡Stanford

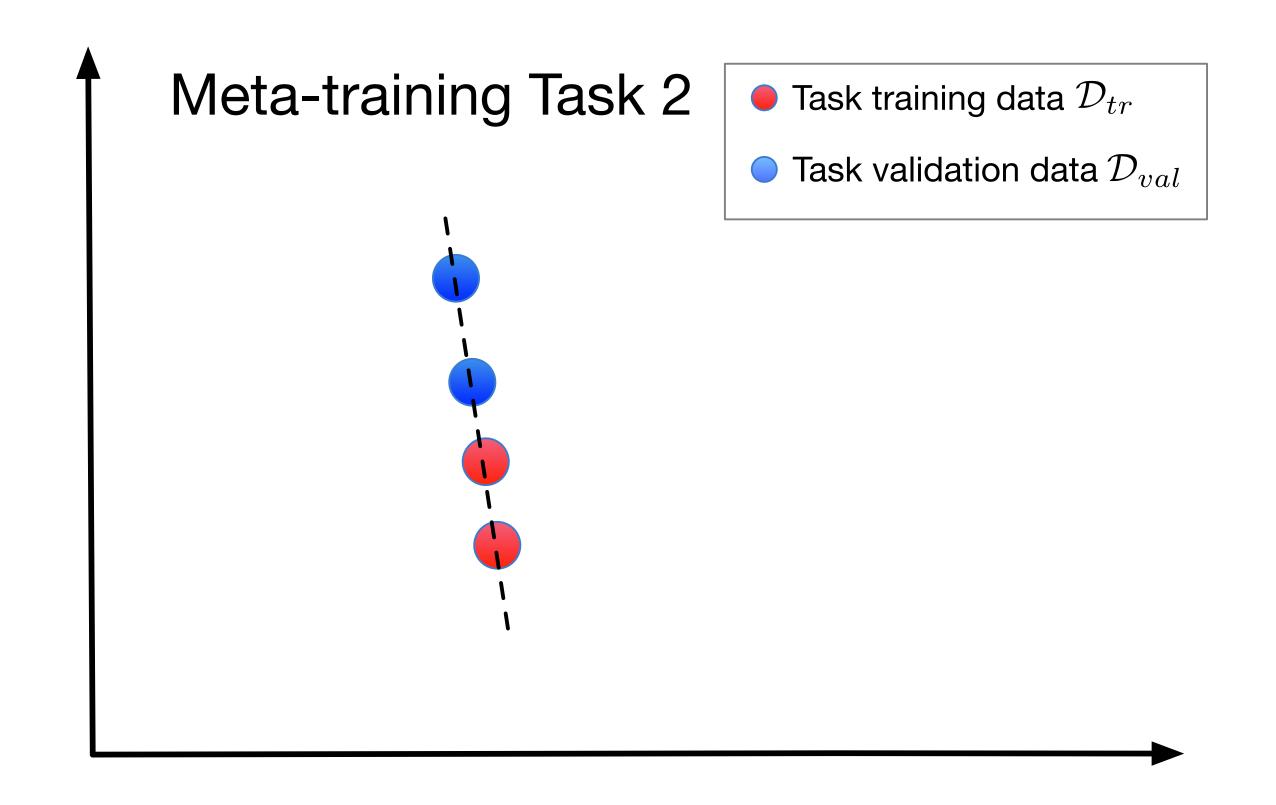
Contact: mzyin@utexas.edu

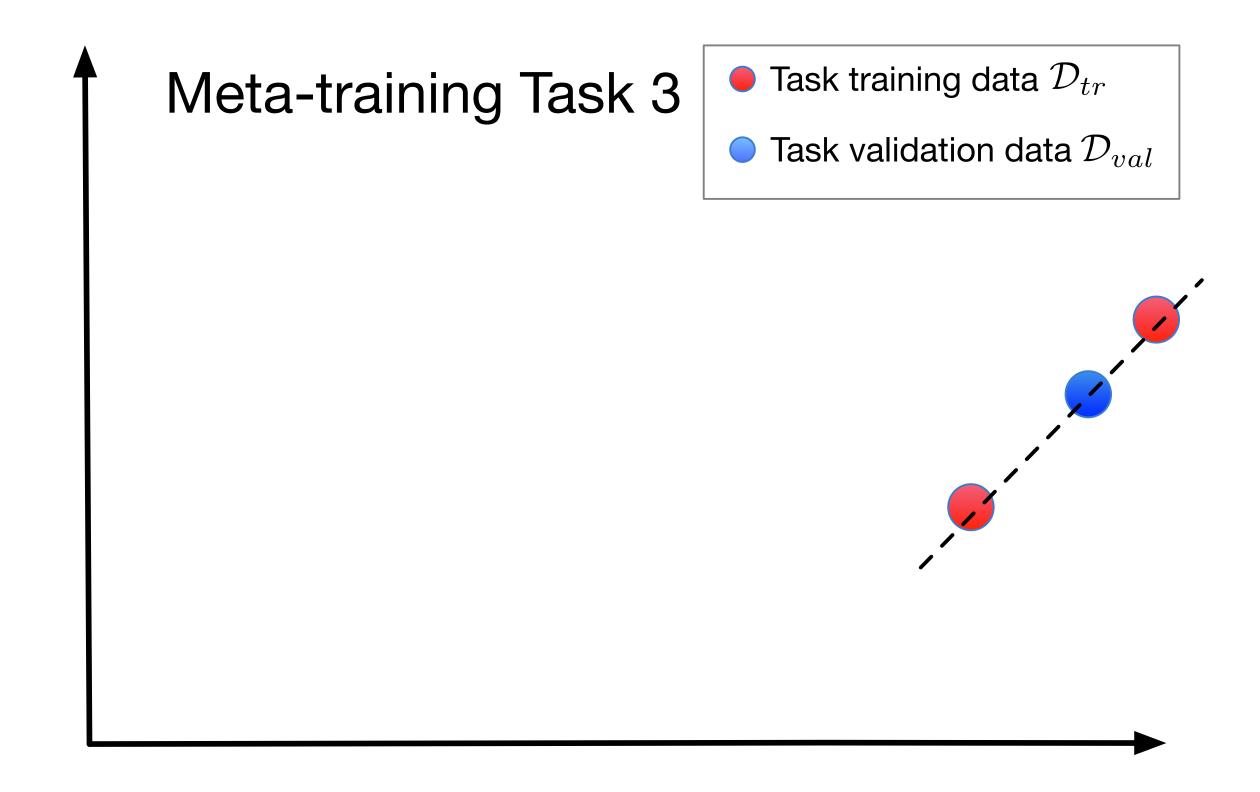
How does meta-learning work?

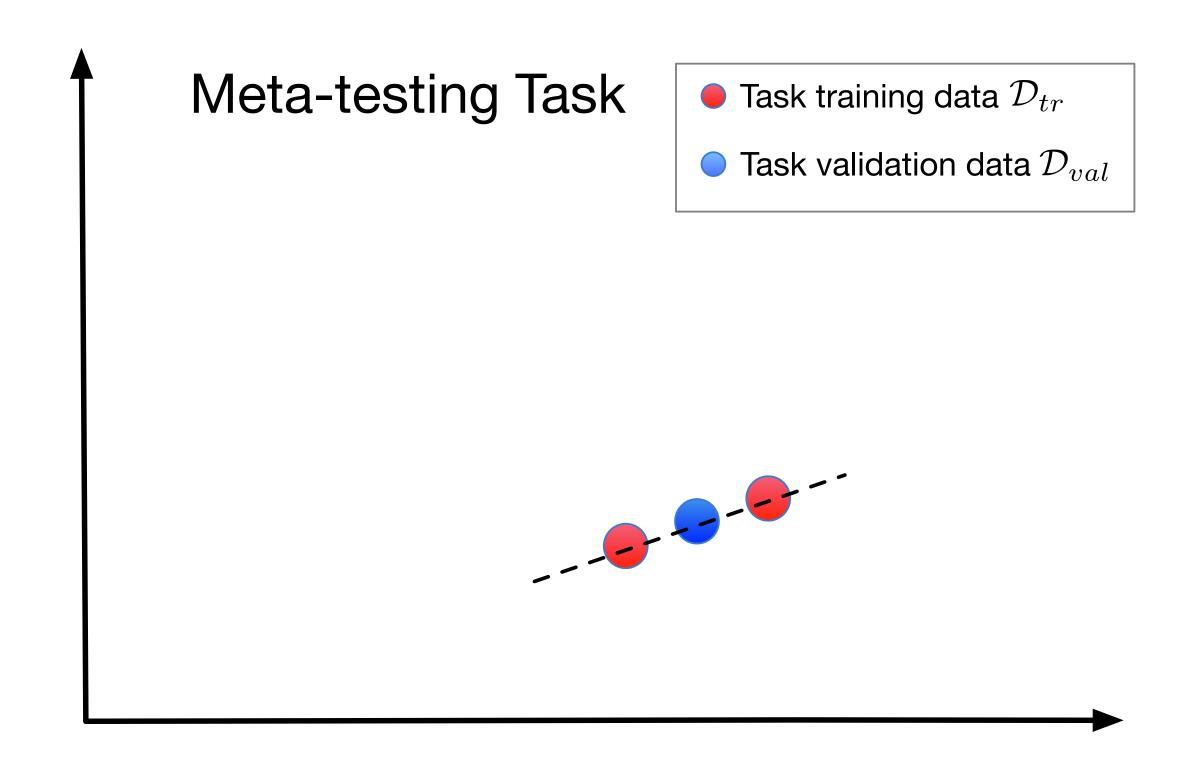
- There are multiple tasks $\mathcal{T}_j \sim P(\mathcal{T})$
- Each task has training data \mathcal{D}_{tr} and validation data $\mathcal{D}_{val}^* = (X^*, Y^*)$
- Meta-learning can solve an unseen task by
 - leveraging past experience from previous tasks
 - adapting to new task training data

Both are necessary!

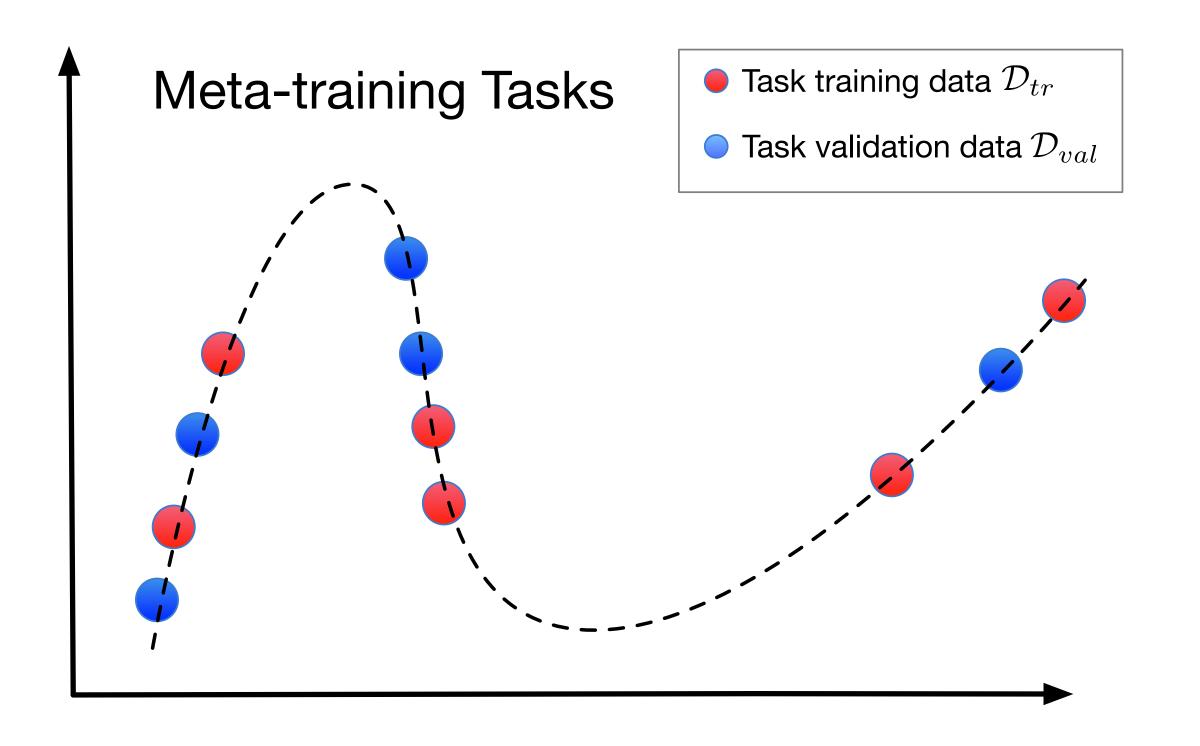




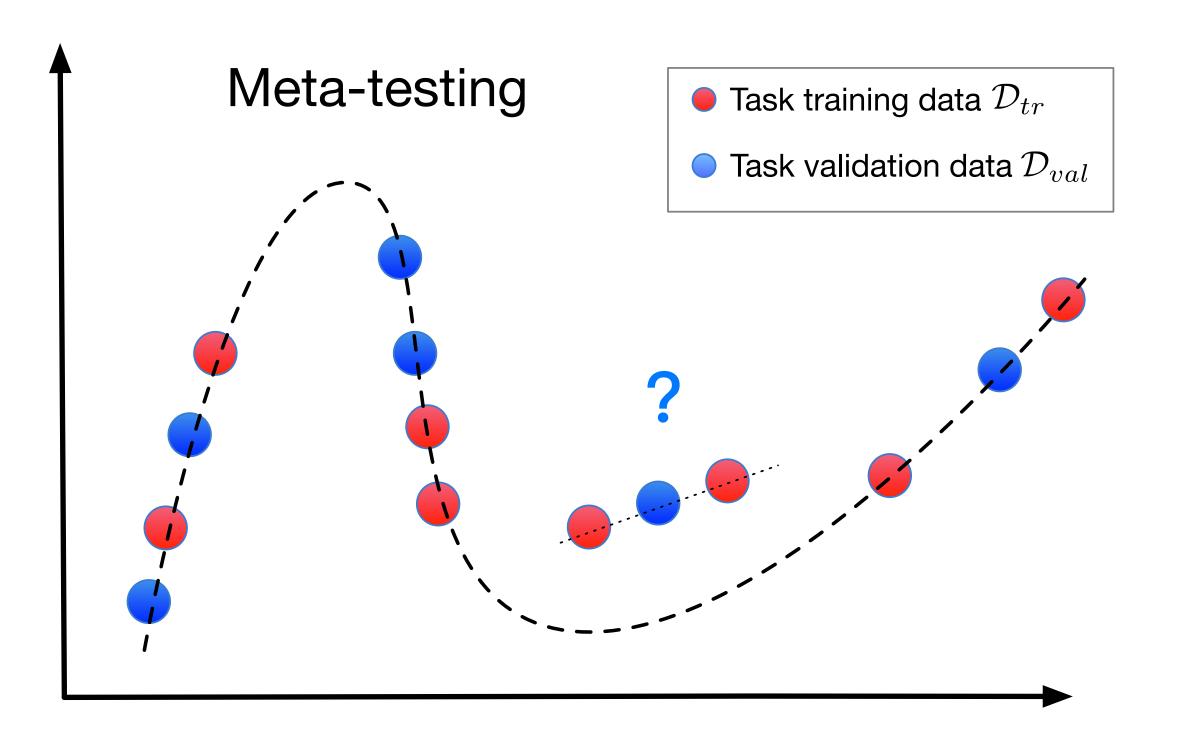




What if all of the meta-training tasks can be solved by a single model?

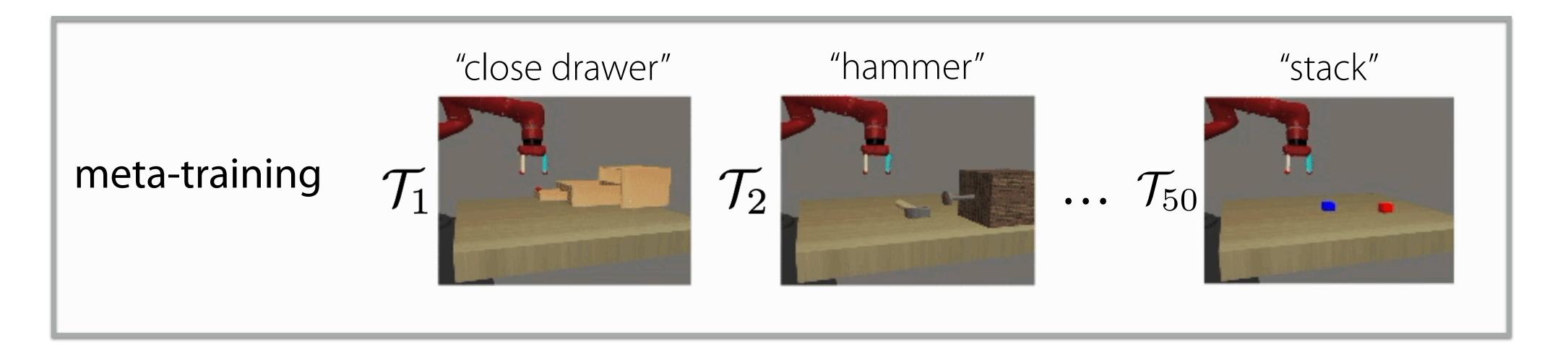


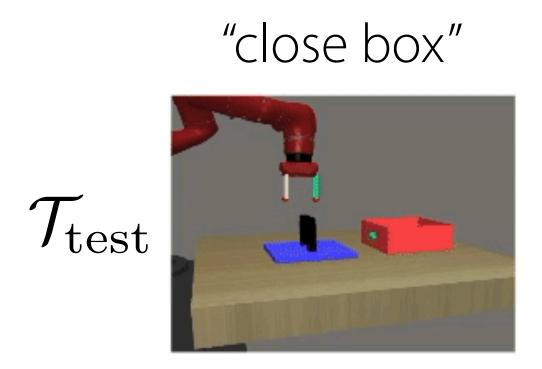
A single model can solve all of the training tasks zero-shot



However, such solution <u>cannot</u> solve meta-testing tasks <u>without</u> using the task training data

Another example





If you tell the robot the task goal, the robot can **ignore** the trials.

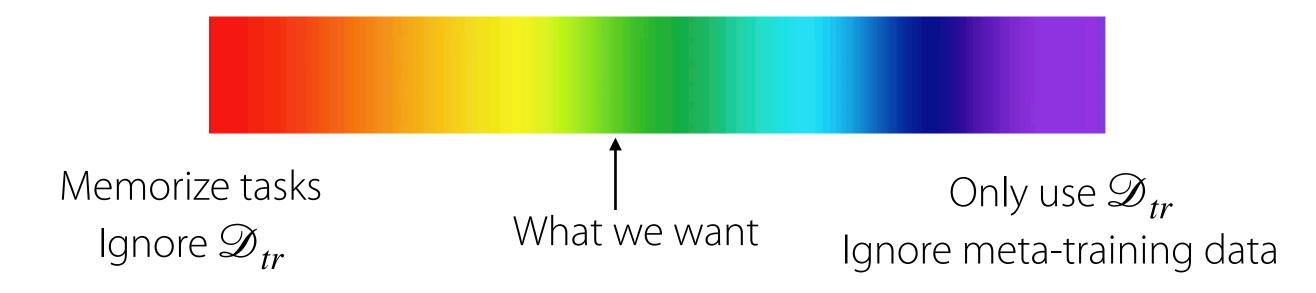
• We formally define it as the (complete) memorization problem:

$$I(\hat{y}_{val}^*; \mathcal{D}_{tr} | x_{val}^*, \theta) = 0$$
, or equivalently $\hat{y}_{val}^* \perp \mathcal{D}_{tr} | x_{val}^*, \theta$

• We identify that memorization is a general problem in many metalearning algorithms, e.g. MAML, CNP Can we do something about it?

- For mutually exclusive tasks (single function cannot solve all tasks):
 - —> Not a problem!
 - e.g. Few-shot classification: randomly shuffle the class labels across tasks
- For non-mutually exclusive tasks (single, function can solve all tasks):
 - —> multiple local optimums in the meta-learning objective

An entire spectrum of local optimums are based on how information flows.



Suggests a potential approach: control information flow.

Meta-regularization (MR)

minimize meta-training loss + information in heta

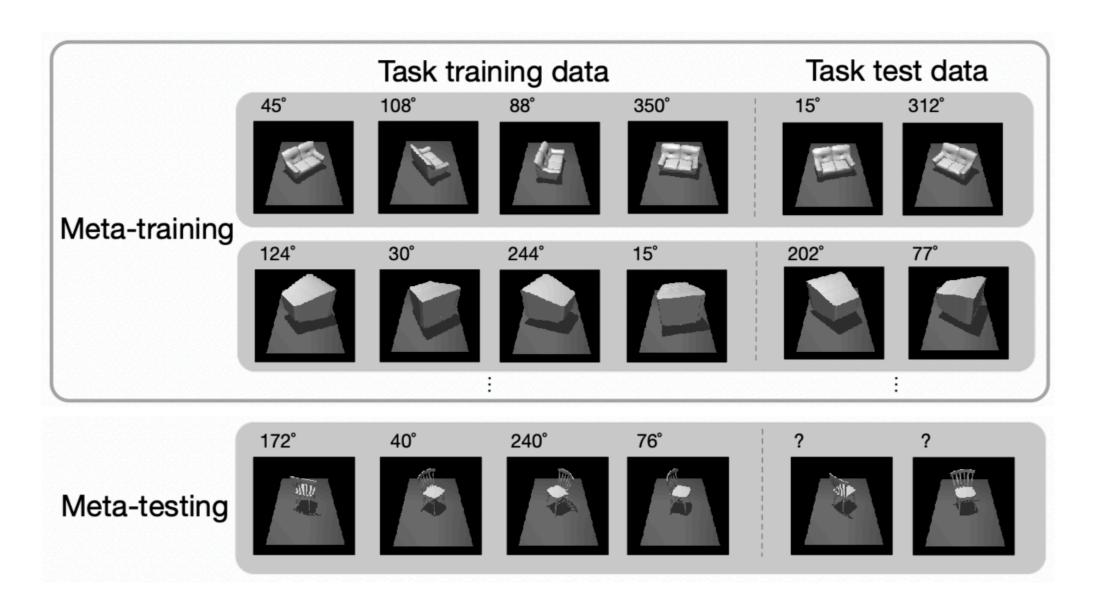
$$\mathcal{L}(\theta, \mathcal{D}_{meta-train}) + \beta D_{KL}(q(\theta; \theta_{\mu}, \theta_{\sigma}) || p(\theta))$$

- Regularizes parameters that don't control the adaptation
- Can be derived from PAC-Bayes theory
- Can combine with many meta-learning algorithms, eg.
 MR-MAML, MR-CNP

Omniglot without label shuffling: "non-mutually-exclusive" Omniglot

NME Omniglot	20-way 1-shot	20-way 5-shot
MAML	7.8~(0.2)%	50.7 (22.9)%
TAML	9.6 (2.3)%	67.9 (2.3)%
MR-MAML (W) (ours)	83.3 (0.8)%	94.1 (0.1)%

On **pose prediction** task:



Method	MAML	MR-MAML(W) (ours)	CNP	MR-CNP(W) (ours)
MSE	5.39 (1.31)	2.26 (0.09)	8.48 (0.12)	2.89 (0.18)

(and it's not just as simple as standard regularization)

CNP	CNP + Weight Decay	CNP + BbB	MR-CNP (W) (ours)
8.48 (0.12)	6.86 (0.27)	7.73 (0.82)	2.89 (0.18)

Takeaways

- Memorization is a prevalent problem for many meta-learning tasks and algorithms
- Whether the algorithm converges to the memorization solution is related to the information flow
- Meta-regularization places precedence on using information from $\mathcal{D}_{\rm tr}$ over storing info in θ .

Collaborators

