Convergence of Gradient EM for Multi-component
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Gaussian Mixture Models
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- Data comes from M clusters in d dimensional space;

- Assume there exists a latent variable 72,

Z ~Multinomial(7);
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of N(p, ).
Gradient EM

- E-step: Q(p|p') = Ex [Zf\ilp(z = i| X p') log ¢(X; ps, Z)}J

po=(pi, -, py)" € RMY
- Density of the mixture is p(z|p) = S, mp(x| i, X), where ¢(z; p, ) is the PDF

-M-step: pit! = pl + s[VQ(p!|p!)]i = pl + sEx [mwi(X; u') (X — pl)].

Gradient Stability Condition

The Gradient Stability (GS) condition [1], denoted by GS(~, a), is satisfied if there exists

v > 0, such that for u! € B(u!, a) with some a > 0, for Vi € [M].
VO 1) = VOl < vl — p|

Theorem 1: Main Result for Population
Define dy = min{d, M }, k = 2=, R, = min; ||[p] — uj” If R, = Q(\/d_o)

Tmin

with initialization p satisfying, ||u) — p?|| < a,Vi € [M], where

Rmin ~
1 < =2 — O(log(Ruyin).

Then the Population EM converges with rate  to the center
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Theorem 2: Main Result for Sample-based EM

Let ( be the contraction parameter in the main theorem, and

e"f(n) = O (% max{ M>(1 + R )*Vdmax{1,log(x)}, (1 + Rmax)d}) .

If e*f(n) < (1 — ()a, then sample-based gradient EM satisfies
.
2 ' 1 _ ¢

4 where c is positive constant.
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with probability at least 1 — n™

Proof based on Rademacher complexity

For any unit vector u and cluster 7, define the function class of gradient operator
Fr={f X =>R[f(X;pu) =w(X; ) (X — p;,u)}

And the target function
gl (X) = sup =Y wi(Xy; (X, — pr, u) — By (X p)(X — py,u). (1)

The proof consists of two steps:
1. First we show that g(X) is close to its expectation by using concentration results.

e Typically one uses McDiarmid's inequality for this step, which requires bounded
differences. In our case we have differences which are bounded with high
probability. We use a result from [2] to go around this problem. This gives a
suboptimal d/+/n rate of convergence.

e We are now working on a result which establishes the optimal /d/n rate using
similar arguments as in [3]. For details see the arxiv version.

2. Second we upper bound [Eg(X) by the Rademacher complexity of F* by the
symmetrization lemma.

e In order to establish the Radamacher complexity we need the following
vector-contraction result.

Vector-valued contraction

To get the Rademacher complexity, we build upon the recent vector-contraction result
from [4]. Define n;(p) : RM? — R as a vector valued function with the k-th
coordinate
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It can be shown that

-5

wi (X p) — wi( Xy p')| < n;(pe) — ()]

Applying the vector-valued contraction lemma,
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Bounding the right hand side, we have

R.(F) < cMP2(1 + Ruyax)*Vdmax{1,log(k)}
T v

Simulation

All settings indicate the linear convergence rate as shown in the analysis;

Increasing imbalance of cluster weights slows down the local convergence rate.
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